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PROGRESS REPORT II (February 2005) 

EVOLVING VISUALLY GUIDED BEHAVIOUR IN ‘HOVERING’ VIRTUAL 
AGENTS 

PI: Dr. R. Beau Lotto 
 

BACKGROUND: 

The primary task of vision is to usefully guide behaviour towards objects in the natural 
world. The challenge in achieving this aim, however, is that the light stimuli that fall on 
an eye are infinitely ambiguous. The need to overcoming stimulus ambiguity is essential 
for evolving useful behaviour in natural and artificial agents. And recent research in 
humans suggests that natural visual systems overcome this challenge by shaping their 
functional structure wholly according to the statistics of experience. If correct, then the 
genesis of robust autonomous agents will require understanding the computational 
principles that correlate evolved structure with the ecological experience that shaped it. 
Since the necessary description of natural systems is not possible to achieve this aim, we 
proposed to:  

Stage I: …develop a virtual world in which neural net agents ‘hover’ above a 2D 
landscape. Since (i) the behaviour and architecture of the networks, (ii) the processes of 
adaptation, (iii) the structure of the environment, and (iv) probabilistic relationship 
between stimuli and behavioural significance will be known and manipulated in an 
environment that incorporates essential aspects of natural ecologies (behavioral 
interaction, co-evolution, and stimulus ambiguity), this evolutionary model of vision 
provides detail necessary to elucidate the probabilistic basis of visual behaviour. 

Stage II: …evolve virtual agents within Mosaic World, and measure their functional and 
behavioural responses. 

Stage III: …create a general statistical (Bayesian) model that correlates neural network 
functional structure and behaviour with the statistics of the agent’s ecological history.  

ACHIEVED TO DATE: 
 
Stage I has been completed, resulting the virtual space we call ‘Mosaic World’. Rather 
than give a detailed description of its many different parameters, four time-lapse videos 
have been created to complement a more superficial description of this virtual space.  
 
BRIEF DESCRIPTION OF COMPLETED STAGE I: 
 
The Space: 
Mosaic World is composed of an n x n array of surfaces (the actual size of the matrix is 
unlimited). As in nature, each surface in this space is defined mathematically by its 
‘reflectance efficiency function’, which describes the nature of its reflectance between 
400 and 700 nm. Though randomly generated, reflectances are constrained by the known 



statistics of natural images. Using a novel growth algorithm, an infinite number of highly 
controllable, though indeterminate worlds can be generated.  
 
Illumination: 
As in nature, surfaces in Mosaic World are lit by extended light sources, whose spectral 
characteristics change continuously in space and time. The size of each illuminant can 
range from a single surface to the entire matrix, and can exist for one to an infinite 
number of time-steps. The overall illumination intensity also varies, thus mimicking 
natural ‘day/night’ cycles. As with the surface reflectance matrix, the illumination matrix 
is created with the same unique growth algorithm.  
 
Agents: 
Each of an agent’s behaviours (e.g., movement, eating, and mating) is controlled by an 
evolvable artificial neural network, the attributes of which (e.g., number and location of 
input nodes, number and location of the hidden nodes, and size and efficiency of the 
connection matrix) can be independently evolved. To achieve this, we have designed a 
unique method of genetic programming that encodes each agent element, not as genes, 
but as objects. The resulting functional structure of each network is wholly indeterminate. 
 
Task: 
There is only a single selection criterion in Mosaic World: Survival. To survive, agents 
must obtain resources from the environment, while minimising costs. Resources are 
obtained either directly from the surfaces (herbivores), or from other agents (carnivores). 
The value of each is determined directly by the colour of the surface (in the case of 
herbivores), or by the energy store of the consumed agent (in the case of carnivores). As 
such, agents in Mosaic World must overcome the inherent ambiguity of the spectral 
information they receive from their environment to survive.  
 
BRIEF DESCRIPTION OF COMPLETED STAGE II: 
 
After completing the visual world (Stage I), the aim of Stage II was to 
determine/demonstrate that it is possible to evolve useful behaviour within this 
ecologically relevant virtual space. This we have also achieved. Indeed, our initial results 
are currently under review at GECCO. For sake of clarity, we’ve also attached that 
manuscript, and so will not expand on those results here. Nonetheless, in completing this 
stage, we have completed exactly what we aimed to achieve in the first two years that 
funding was provided. As the project is being terminated, we will not be able to pursue 
the final (Stage III), where the aim was to use the model to determine/generate robust 
statistical algorithms that could be generalized to autonomous visually-guided robotic 
systems in natural environments.  
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Abstract. The fundamental challenge faced by any visual system within 
natural environments is the ambiguity caused by the fact that light that falls on 
the system’s sensors conflates multiple attributes of the physical world. Under-
standing the computational principles by which natural systems overcome this 
challenge and generate useful behaviour remains the key objective in neurosci-
ence and machine vision research. In this paper we introduce Mosaic World, an 
artificial life model that maintains the essential characteristics of natural visual 
ecologies, and which is populated by virtual agents that – through ‘natural’ se-
lection – come to resolve stimulus ambiguity by adapting the functional struc-
ture of their visual networks according to the statistical structure of their eco-
logical experience. Mosaic World therefore presents us with an important tool 
for exploring the computational principles by which vision can overcome 
stimulus ambiguity and usefully guide behaviour. 

1   Introduction 

While computers can outplay the top chess Grandmasters, they cannot recognise a 
flower in a meadow with the same proficiency of a bumblebee. The reason is that, 
unlike computers, the bee’s miniature brain, which is made up of 240 times fewer 
neurons than humans have retinal receptors, has – like all natural visual systems – 
adapted to resolve the most fundamental challenge of natural visual ecology, which is 
that light stimuli are fundamentally ambiguous with respect to their natural prove-
nance.  

Though seemingly counterintuitive, since our internal representation of the world 
seems so unambiguous, consider (i) that the world is composed of many kinds of 
objects under many different kinds of lights, and (ii) that vision does not have direct 
access to that world. Rather, the only information that any visual system has access to 
is the light that falls on its eye/sensors (i.e., stimuli). Now, assuming that useful vi-
sion requires generating behaviour according to the sources of stimuli, then we have 



what seems an impossible problem. The problem is this. The quality and intensity of 
any stimulus is determined from both an object’s reflectance and illumination simul-
taneously. Since changing either parameter changes the stimulus accordingly, there is 
no way to deduce from the stimulus itself its underlying source, which could be any 
number of different reflectance/illumination combinations. Thus, the task of recognis-
ing an object under different illuminants is like solving the equation x • y = z for x 
without ever knowing y. And yet, natural systems – from bees to humans – solve this 
problem continuously when recognising objects in natural environments. Understand-
ing how this is achieved is essential to understanding natural vision, and for creating 
successful artificial visual systems. 

While the physiological mechanisms are currently unknown, recent neuroscience 
research suggests natural systems overcome the problem of stimulus ambiguity by 
generating visual behaviour probabilistically, by shaping the functional structure of 
visual processing empirically in ontogeny and phylogeny (Lotto and Purves, 1999, 
2000, 2001; Purves and Lotto, 2003). The premise of this hypothesis is that to be 
useful, vision need not accurately represent the world, but generate statistical con-
structs based on what proved useful in past experience. If correct, then to understand 
vision will require understanding in quantitative terms of the statistical relationship 
between images, their behavioural consequences in past experience, and the func-
tional structure of adaptive network systems, information which is unknown, if not 
unknowable in natural systems. It is within this context that Artificial Life presents us 
with a necessary tool for prosecuting the empirical basis of vision. 

Indeed, researchers in many fields have used A-Life models to explain biological 
phenomena, such as – but not limited to – ecological dynamics of growing plants 
(Dyer et al, 2001; Dyer and Bentley, 2002), sexual selection (Collins and Jefferson, 
1992), foraging behaviour of Anolis lizards (Koza et al, 1992), and even war and 
peace between virtual nations (Unemi et al, 2003). Within the context of vision re-
search, Liese et al (2001) created an A-Life simulation in which virtual light sensors 
evolved according to whether or not they obtained sufficient light from their envi-
ronment. In another model, Kortmann et al (2001) evolved a population of visuo-
motor systems to investigate the trade-off between spatial and temporal resolution 
that occur in biological systems. Finally, Terzopoulos and Rabie (1995) created a 
realistic simulation of a population of artificial fish to facilitate “…active vision re-
search”.  

While the above visual A-Life models were useful in their own right, they did not, 
nor could they help us to address questions about how natural vision systems deal 
with stimulus ambiguity. Mosaic World was therefore created to overcome this obsta-
cle by preserving these essential characteristics of natural visual ecology.  

2   System 

Mosaic World is an A-Life, virtual environment made up of 2D ‘coloured’ surfaces 
under simple-to-complex patterns of ‘coloured’ illumination. The virtual agents, the 
‘critters’, that inhabit Mosaic World have one task: to survive, which they do by eat-
ing good resources and avoiding bad ones. Furthermore, as a stable population re-



quires new members, the agents multiply through sexual and asexual reproduction. 
The behaviour of each agent is controlled by an artificial 3D neural network. All 
attributes of the networks – from receptor number and spectral sensitivity, to hidden 
node number, to the connections between the nodes – are evolvable.  

2.1   Environment 

The ground matrix of Mosaic World is made up of 100x100 ‘surfaces’. Beyond the 
edges of the world, there is nothing: A critter attempting to travel more than one sur-
face beyond the edge dies. Within the surface matrix, there are holes. Entering a hole 
has the same effect as stepping over the world’s edges. 

Every surface is defined in terms of its location and reflectance function, which 
describes its proficiency at reflecting wavelengths within the range of visible light 
(400 to 700 nm). Because Critters ‘eat’ surfaces, or more specifically their constituent 
wavelengths, a surface’s reflectance function determines its resource value, and hence 
its behavioural relevance: A surface that reflects wavelengths that the experimenter 
decides are ‘good’ will add positively to the agent’s resource intake, whereas eating 
from surfaces that reflect only ‘bad’ wavelengths will add negatively to the agent’s 
resource intake. As a surface is ‘consumed’, it becomes increasingly less reflective, 
and hence more transparent, eventually becoming invisible. Through time it will 
regenerate its reflectance at a rate pre-determined by the experimenter.  

In nature, because objects and illuminants are extended in space, two neighbouring 
points in any image are more likely to have the same physical characteristics than are 
two points further away from each other. To model this statistical relationship in 
Mosaic World, a CA (cellular automata) algorithm was created that enables complete 
control over such clustering across the ground matrix (see Figure 1 for algorithm 
description), as well as the relative proportion of negative-to-positive wavelength 
resources in the world. Thus, the surface matrix can be customised in terms of reflec-
tance/illumination size, which can vary from one pixel to the entire world, as well as 
each clusters’ shading, which can be gradual changes to random transitions.  

Illumination of Mosaic World is controlled by simulated external light sources, 
each modelled as a discrete wave function in the range between 400nm and 700nm. 
The spatial distribution of illumination across the surface matrix is controlled using 
the same CA algorithm used to create the surface matrix. Illumination can also 
change in time, both in terms of quality (i.e., its spectral distribution), size and 
movement across the space, all at rates pre-defined by the researcher. See Figure 2 for 
a few examples. 

It’s important to stress that, as in natural environments, each stimulus arising from 
each surface in Mosaic World is determined by the relative contribution of its reflec-
tance and its illumination: Stimulus (S) = Reflectance (R) • Illumination (I). It is this 
ambiguous stimulus that is presented to the virtual agents, with the consequence 
that there is no direct way for the agent’s sensors to estimate a given surface’s type 
from the stimulus alone.  
 



 
 
Figure 1:  The Shading/Clustering algorithm 
 



 
    

Figure 2: A few sample worlds. [a] Large clusters, uniform ‘white’ illumination. 
[b] Same world as [a] with multiple illuminants. [c] Many small clusters, uni-
form ‘white’ illumination, 3 holes. [d] Same world as [c] with multiple illumi-
nants. 

2.2   Critters 

‘Critters’ are the inhabitants of Mosaic World. Every critter has field of view (the area 
it receives stimuli from the environment), and an orientation (the direction it is fac-
ing). Upon instantiation, all critters are given a certain amount of energy, which de-
creases in time. The amount of energy lost in each time-step is determined by the 
following: rate of motion (faster speeds cost more), turning (in increments of 90 de-
grees), eating (big ‘bites’ cost more: bite size is ‘chosen’ by the critter itself), and 
reproduction. Also, the larger a critter’s neural network structure, the more costly is 
each time-step. If a critter’s energy level drops to 0, it dies, giving it a strong incen-
tive to gain energy by consuming surface reflectances (as described above), or by 
preying on other critters (even though all critters are instantiated as omnivores, they 
can become exclusively herbivores or carnivores in time).  



Critter population is maintained in Mosaic World through sexual and asexual re-
production. To facilitate sexual reproduction, critters are also instantiated with a 
transmittant colour, which can evolve, and can thus be used as a cue for recognising 
conspecifics (as well as predators and prey). Depending on the mode of reproduction, 
an offspring’s genome will either be a mutated version of its parent (asexual repro-
duction), or will be a mutated and recombined version of its parents’ genomes (sexual 
reproduction). The offspring’s starting energy is transferred from its parent/s (thus, 
reproduction costs energy). 

Each critter’s phenotype is determined by its genome, which is a conceptual entity, 
that defines all the traits of a critter: Visual system (all details regarding the receptors: 
position, tuning, peak, activity), 3D Neural network (number and position of hidden 
units, definition of connection weights: value, starting unit, ending unit or coordi-
nate), transmittance (the critter’s colour). There is a one to one relationship between 
the genes in the genome and a critter’s phenotype.  

Each physical attribute of the critter is treated as an object, and each object can ei-
ther mutate, or parts of it can be recombined with comparable objects from other 
critters during sexual reproduction. Thus, the only time the genome is explicitly dis-
played is when a critter is saved for analysis and is stored in a text file (see summa-
rised genome in Figure 3). Of course the most important aspect of each critter’s phe-
notype is its ‘visual brain’, which translates the ambiguous stimulus information into 
useful behaviour.  

 

 
 
Figure 3: Sample summarised critter genome 

2.2.1   Visual Brain                             
An agent’s visual brain comprises a modified 3D feedforward neural network. The 
3D network is composed of multiple 2D layers (see Figure 4 for illustration). The 



input layer is the visual layer, which contains receptors (these are essentially modi-
fied input units) and a health monitor unit, which receives the percentage of the crit-
ter’s remaining health. The hidden layers contain standard hidden units. The output 
layer contains output units, which determine the critter’s behaviour: turn left or right, 
move forward or stay in the same position, sexually reproduce with a critter standing 
where it is, asexually reproduce, bite surface and bite a critter standing where it is. 
Every unit in the network has an [x,y] coordinate relative to the critter’s centre, which 
defines its location in the layer it is placed in. Thus, an important and novel attribute 
of our design is that networks of vastly different architectures can be crossed over 
during sexual reproduction, as each network possesses the same virtual 
body/coordinate reference frame. 

The receptor’s position in the input layer also determines the location – relative to 
the critter’s centre – where it detects light from Mosaic World (i.e., its visual ‘recep-
tive field’). How it responds to that light is determined by its spectral sensitivity func-
tion, as in natural systems, between 400nm-700nm. The receptor’s peak sensitivity 
can be for any wavelength within this range (at increments of 10nm). The receptor’s 
tuning defines its half bandwidth (i.e., the number of wavelengths to which it will 
respond). A receptor can be either active or inactive. Inactive receptors do not par-
ticipate in subsequent processing, but are nonetheless inherited by offspring; these are 
discarded if inactive for a long period of evolutionary time. 

Every receptor has an adaptation factor, which is determined from one of the net-
work’s output neurons, thus enabling the critter to adapt to different ranges of stimuli. 
A similar mechanism is employed in nature and enables humans to see both at night 
and during the day.  

The units of the network communicate through connection weights that can extend 
between units from higher layers to lower layers, and can also connect units to empty 
coordinates in the network (‘partial’ connections). Connections can be active, inac-
tive, or completely nonexistent. Inactive, ‘partial’ or ‘missing’ connections do not 
participate in the feed-forward process. Connections are discarded if inactive for long 
periods of evolutionary time.  

 



 
 
Figure 4: ‘Visual Brain’ - 3D neural network. This brain has three layers (one 
hidden layer). The visual layer contains three receptors (one highly tuned, the 
other two possess lower tuning values). The visual layer is connected to the hid-
den layer, specifically to five hidden units and two empty coordinates (partial 
connections). The hidden layer is connected to the output layer. 

2.3   Evolution 

To maintain an open-ended system, Mosaic World’s evolution utilises a genetic algo-
rithm with no fixed population size and no explicit fitness function. The critters them-
selves decide when to reproduce (sexually or asexually) by activating the appropriate 
output neurons. Critters survive if they can eat good resources, avoid predators and 
stay on the world. Thus, there’s an implicit evolutionary selection pressure to im-
prove all traits that increase such skills. For the population to survive, the virtual 
agents must balance reproduction with resource consumption. Otherwise, there may 
be too many critters for the world to sustain, or too few critters to maintain the popu-
lation. 

Because at time-step 0 all critters are randomly instantiated, a statistical conse-
quence of this is that the initial population sometimes dies. When this happens, a new 
population of random critters is instantiated, with the caveat that 20% are mutated 
clones of critters that showed general promising surviving skills (a combination of 
survival age and mating amount).  

Crossover takes place during sexual reproduction. During crossover, a random 
point is selected on each network layer of both mating critters. All 3D layers of each 
critter brain are ‘sliced’ at this point, and recombined with the half from the other 



critter in creating offspring. Not only does this process create novel patterns of node 
distributions, but it also creates connections between nodes that existed in neither 
parent. For instance, if a ‘partial’ connection is obtained from one parent, and a hid-
den node at the corresponding coordinate that previously lacked a connection, from 
the other parent, then this becomes a novel connection that didn’t exist in either par-
ent previously. Crossover also combines the transmittance functions of both mating 
critters. 

Mutation takes place during sexual and asexual reproduction. Mutation in a ge-
nome occurs through several different ways: 1. Drift mutation causes a receptor to 
randomly switch positions in the visual layer (0.3% per receptor). 2. Peak mutation 
changes the receptor’s peak (2% per receptor). 3. Tuning mutation changes the value 
of the critter tuning (2% per receptor, changes by up to 0.2). 4. Activation state muta-
tion changes the state (active or inactive) of receptors and connections affected (0.3% 
per receptor and connection).  5. Structural Mutations that change the brain structure, 
such as 5a. Delete Receptor (0.3% per receptor), 5b. Delete Hidden Unit (deleting a 
hidden unit leaves unconnected connections; 0.3% per unit), 5c. Delete Connection 
(0.1% per connection), 5d. Add Connection (1%), 5e. Add Receptor (1%) and Add 
Hidden (1%). 6. Value mutations affect the value of the connection weights (changes 
by up to 1). And 7. Transmittance mutations affect the transmittance defining the 
colour of a critter (per wavelength, by up to 0.05). 

3   Experiment 

A principle hypothesis of Mosaic World is that critters that evolve within relatively 
‘simple’ worlds composed of one uniform illuminant, where there is a simple one-to-
one relationship between stimuli and their source, will survive less well in ambigu-
ous environments, under multiple illuminants, where there is a many-to-one relation-
ship between a stimulus and its source. In contrast critters that evolved within such 
complex worlds will survive well in these worlds.  To test this, agents were presented 
with a surface matrix under one illuminant, or under multiple illuminants. To survive 
critters would have to learn how and when to move, when to mate, how to avoid the 
world’s edge and its holes, as well as recognise positive resources and avoid bad 
ones. In this experiment, short wavelengths were ‘good’ (increased the critter’s 
health), and long wavelengths were bad (decreased the critter’s health). Thus, agents 
needed to recognise surfaces that reflected predominantly short wavelengths (which 
would appear ‘bluish’ to the human visual system) under multiple lights, and avoid 
those that would appear ‘reddish’ to human observers. Green, grey and purple sur-
faces, and every combination, as they reflect both short and long wavelengths to the 
same extent, would – on balance – offer no reward (as they would add as much to the 
health of the agent as they take away). Of course determining the identity of good and 
bad surfaces becomes increasingly difficult as the number of illuminants in the world 
increases, which increases the number of stimuli arising from each surface accord-
ingly.  

Twelve randomly generated worlds were created using the identical methods and 
surface/illuminant statistics. Critters were evolved on all 12 worlds under the two 



different conditions: (1) constant illumination (a uniform illuminant with an intensity 
of 0.6 at each wavelength), and (2) multiple illuminants that change in location and 
quality every 50 time steps. After 550,000 time steps, all 24 runs were stopped, and 
the 5 oldest critters were taken from each run. This criterion for selection is somewhat 
arbitrary, but there is no easy way to measure the fitness of evolved critters, and sur-
vival age seems to be positively correlated with fitness. 

A test world was created, and 3 copies of each of the 5 chosen critters were placed 
in it (for a total of 15 critters per test). The test world was run under uniform illumi-
nation, and under multiple illuminants. Every such run was performed 5 times, for a 
total of 120 runs. The comparison of the critters was a simple survival test: the aver-
age survival time of the critters in the test world was calculated and compared. Crit-
ters that survived till the end of the test run (10,000 time steps) were assumed to have 
died then. 

4   Results 

Condition of 
Evolution 

Average survival under a 
uniform illuminant   

Average survival under 
multiple illuminants 

Random critters 86.66 88.34 
Evolution under a   
uniform illuminant 3067.72 1252.8 

Evolution under      
multiple illuminants 3520.43 1573.46 

 
Table 1: Average survival times for critters in test worlds; broken down accord-
ing to evolution with uniform or multiple illuminants.  
 

Number of Visual 
Receptors 

Survival with uniform 
illuminant  

Survival with multiple 
illuminants  

1 3185.55 1302.48  
2 3989.25 1952.83 

 
Table 2: Average survival time for critters that evolved under multiple illumi-
nants; broken down according to critters that evolved one and two receptors. 
 
Table 1 shows the resulting data of the average survival time of critters that evolved 
in multiple or uniform illuminant worlds tested under multiple and uniform illuminant 
test worlds. As can be seen in the first row, randomly instantiated critters (the control 
group) did not survive for long in either world. When comparing the second and third 
rows, it is also clear that critters that evolved under multiple illuminants survived 
longer than those that evolved under a uniform illuminant when tested in either test 
world. Thus, the critters with the best performance in all test worlds were critters that 
evolved under multiple illuminants. 



It is interesting to note that when evolved under uniform illumination, only 1 out 
of 12 test critters had more than one visual receptor. This was not the case, however, 
under multiple illuminant runs, where 5 out of the 12 test critters evolved multiple 
receptors. We therefore tested whether there is a behaviour value in adapting multiple 
receptor types by comparing the survival rates for critters with one or two receptors, 
which is shown in Table 2. As can be seen in column 1 of Table 2, the survival rate 
for single receptor critters that evolved in multiple illuminants worlds was very simi-
lar to the survival rate of critters that evolved under a single illuminant (and that also 
evolved a single receptor type). In contrast, critters that evolved two receptor types 
survived much longer on average - under both conditions, as is shown in column 2. 
Thus, adapting multiple receptor types, which is fundamental for colour vision, is 
important in more complex conditions of illumination, presumably because it enables 
critters to better recognise surfaces under more varied conditions.  

5   Conclusions 

The above experiments confirm the hypothesis that ambiguous environments provide 
a unique challenge that requires specific adaptations in order to survive and thrive. 
Once obtained, individuals possessing it in general are more adapted for ambiguous 
and non-ambiguous environments alike.  

Since this challenge is universal in natural environments, it is expected that using 
the Mosaic World framework experiments examining multiple aspects of natural 
vision can be run. By creating conditions inspired by their natural counterpart and 
seeing what strategies the evolved critters use to survive, it is anticipated that exciting 
and important insights into biological vision can be gained. Furthermore, using re-
verse engineering of the evolved critters, simple and efficient algorithms that can 
benefit all vision research may be derived. 
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